旷视研究院联合北京大学数学科学学院机器学习实验室开设的《深度学习实践》全套课程(视频 ppt,共计28课时)今日正式全面上线,让你足不出户也能享有高水平的教学资源。
“与其疫情宅家玩游戏,不如家里蹲大学把课上。”疫情期间,我们每日听到的最多的信息之一可能就是号召大家在线坚持学习。不过,在左有“名师授课”、右有“速成深度学习”,多重信息的围攻之下,大部分人最终还是选择了那条无数“英雄”选择的道路——“收藏 下次一定”,重回电子虚拟世界,麻痹自己,蹉跎人生。
怎么办?旷视研究院为你支招!
今日,旷视研究院联合北京大学数学科学学院机器学习实验室开设的《深度学习实践》全套课程(视频 ppt,共计28课时)全面向社会免费开放!从深度学习基础理论到计算机视觉实践,由旷视首席科学家兼研究院长孙剑,及身经百战的研发总监、资深研究员亲身授课,、及身经百战的研发总监、资深研究员亲身授课,真正将高水平深度学习课程带给大家。知识全面、循循善诱、透彻又不枯燥是本课程最大的特点。
《深度学习实践》是旷视研究院联合顶尖高校开设的系列深度学习精品课程之一。作为旷视的研发中心,旷视研究院一直基于自研的人工智能算法平台brain 和深度学习框架megengine开展最前沿学术、产业技术研究、交流,累计收获27项世界冠军;并实现在个人物联网、城市物联网、供应链物联网三大领域的应用落地。值得一提的是,旷视后续将对brain 及其核心框架、平台进行开源、开放,强大的算力、sota模型、框架资源任你用,敬请期待~
此次课程录制于2017年秋季旷视研究院在北京大学授课期间,已连续开设3年,后续将开放更多精彩课程供同学们学习、研究。
课程大纲
lecture 1: introduction to computer vision and deep learning
lecture 2: math in deep learning
lecture 3: neural network basics & architecture design
lecture 4: introduction to computation technologies in deep learning
lecture 5: neural network approximation
lecture 6: modern object detection
lecture 7: scene text detection and recognition
lecture 8: image segmentation
lecture 9: recurrent neural networks
lecture 10: introduction to generative models (and gans)
lecture 11: person re-identification
lecture 12: shape from x
lecture 13: visual object tracking
lecture 14: neural network in computer graphics
课程传送门:
课程地址:
ppt:进入微信公众号后台,回复关键词“深度学习实践ppt”即可获取下载链接。
最后讲个真实的故事。
1665年,牛顿在剑桥三一学院就读期间,伦敦发生大瘟疫,造成数万人死亡。牛顿回家自我隔离,亲戚也不走,聚会也不去。
但正是这段清浄的时间,让他有机会思考数学、光学、力学的问题,硕果累累,成功创立了二项式定理和光的分解,确立了牛顿第一、第二定律和引力定律的基本思想……
恩?仿佛听到有人在谈论我?
祝大家身体健康,少出门、多运动,提高免疫力的同时也不要忘了加倍努力学习思考哦~
雷锋网(公众号:雷锋网)雷锋网雷锋网
注:本文转载自雷锋网,如需转载请至雷锋网918博天堂官网申请授权,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如有侵权行为,请联系918博天堂官网,我们会及时删除。
这家伙太懒了,什么也没留下。